Fibre architecture and song activation rates of syringeal muscles are not lateralized in the European starling.
نویسندگان
چکیده
The songbird vocal organ, the syrinx, is composed of two sound generators, which are independently controlled by sets of two extrinsic and four intrinsic muscles. These muscles rank among the fastest vertebrate muscles, but the molecular and morphological foundations of this rapid physiological performance are unknown. Here we show that the four intrinsic muscles in the syrinx of male European starlings (Sturnus vulgaris) are composed of fast oxidative and superfast fibres. Dorsal and ventral tracheobronchialis muscles contain slightly more superfast fibres relative to the number of fast oxidative fibres than dorsal and ventral syringealis muscles. This morphological difference is not reflected in the highest, burst-like activation rate of the two muscle groups during song as assessed with electromyographic recordings. No difference in fibre type ratio was found between the corresponding muscles of the left and right sound generators. Airflow and electromyographic measurements during song indicate that maximal activation rate and speed of airflow regulation do not differ between the two sound sources. Whereas the potential for high-speed muscular control exists on both sides, the two sound generators are used differentially for modulation of acoustic parameters. These results show that large numbers of superfast fibre types are present in intrinsic syringeal muscles of a songbird, providing further confirmation of rapid contraction kinetics. However, syringeal muscles are composed of two fibre types which raises questions about the neuromuscular control of this heterogeneous muscle architecture.
منابع مشابه
Role of syringeal muscles in controlling the phonology of bird song.
1. The contribution of syringeal muscles to controlling the phonology of song was studied by recording bilateral airflow, subsyringeal air sac pressure, electromyograms (EMGs) of six syringeal muscles, and vocal output in spontaneously singing brown thrashers (Toxostoma rufum). 2. EMG activity in musculus syringealis ventralis (vS), the largest syringeal muscle, increases exponentially with the...
متن کاملBilaterally symmetrical respiratory activity during lateralized birdsong.
We investigated whether activity of expiratory muscles reflects lateralized activity of the vocal organ during production of birdsong. Respiration and syringeal motor activity were assessed in brown thrashers by monitoring bilateral airflow and subsyringeal air sac pressure, together with the electromyographic activity of expiratory abdominal muscles and vocal output. Activity of expiratory mus...
متن کاملSyringeal Specialization of Frequency Control during Song Production in the Bengalese Finch (Lonchura striata domestica)
BACKGROUND Singing in songbirds is a complex, learned behavior which shares many parallels with human speech. The avian vocal organ (syrinx) has two potential sound sources, and each sound generator is under unilateral, ipsilateral neural control. Different songbird species vary in their use of bilateral or unilateral phonation (lateralized sound production) and rapid switching between left and...
متن کاملAcquisition of an acoustic template leads to refinement of song motor gestures.
Vocal learning, a key behavior in human speech development, occurs only in a small number of animal taxa. Ontogeny of vocal behavior in humans and songbirds involves acquisition of an acoustic model, which guides the development of self-generated vocalizations (sensorimotor period). How vocal development proceeds in the absence of an acoustic model is largely unknown and cannot be studied direc...
متن کاملSyringeal muscles fit the trill in ring doves (Streptopelia risoria L.).
In contrast to human phonation, the virtuoso vocalizations of most birds are modulated at the level of the sound generator, the syrinx. We address the hypothesis that syringeal muscles are physiologically capable of controlling the sound-generating syringeal membranes in the ring dove (Streptopelia risoria) syrinx. We establish the role of the tracheolateralis muscle and propose a new function ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 213 Pt 7 شماره
صفحات -
تاریخ انتشار 2010